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A discrete method is presented for samphng amsotropic angular scattering distributions in 
Monte Carlo stmulattons. Derived from fundamental transport considerations, this method IS 
based on equating the moments of a given dtstribution with those of a discrete distribution 
consistmg of a sequence of Dirac delta spikes. The discrete method is slightly faster and, for a 
given scoring accuracy, more flexible than the tabular sampling method. Tests indicate that 
accuracy better than 1 % in calculated transmittances is generally obtainable using only 4 
spokes, provided the single scattering albedo exceeds 0.7. Conditions are described under 
which this method can be applied to heterogeneous media. ‘c’ 1988 Academv Press. Inc 

INTRODUCTION 

The simulation of particle transport using the Monte Carlo method is well 
established and remains an area of active scientific application and research. 
Common applications involve the transport simulation of neutrons [ 1, 21, photons 
[ 1, 3,4] and charged particles [3]. A practical summary of Monte Carlo 
simulation is given in the book by Carter and Cashwell [ 11. 

In the biological sciences most simulations are designed to either estimate the 
absorption of photon energy in human tissues [4, S] or simulate an imaging 
procedure [6]. By scoring reflectance or transmittance [7], fundamental inter- 
action parameters can also be estimated. 

The basic premise of Monte Carlo simulation is that complex particle-matter 
interactions can be treated as stochastic processes, and a single interaction can thus 
be simulated by random sampling from appropriate probability density functions. 
Accordingly, a great deal of effort has focused on developing mathematical techni- 
ques to reduce computation time by reducing the variance in scored quantities. The 
two classes of techniques commonly employed in variance reduction are biasing, 
denoting the sampling from altered probability density functions, and alterations of 
the scoring procedure. Frequently used biasing techniques are splitting and roulette 
[ 11, the exponential transform [8,9], and biasing either the source or the angular 
scattering distribution [ 10, 111. 
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For simulations involving highly anisotropic scattering, the scoring accuracy is 
often limited by the angular sampling procedure. A usual procedure is to tit the 
angular scattering probability density function (PDF) to an analytic function for 
which a known sampling procedure exists, usually based on sampling the uniform 
PDF [12]. 

Another useful approach is to approximate the angular scattering PDF by a 
sequence of spline functions. An intrinsically fast angular sampling method involves 
using a single sample of a uniform random variate to directly index a tabulated 
version of the angular scattering PDF. While conceptually simple, this and other 
“table look-up” methods are inconvenient for simulations where the angular 
scattering PDF is a parameter to be varied. 

In this paper we derive, based on fundamental transport considerations, a 
discrete angular sampling method in which a given angular scattering PDF is 
replaced by a discrete PDF. The method should be useful for all neutral particle 
simulations and particularly those involving highly anisotropic scattering. 

METHOD 

The single energy group neutral particle transport equation, to be solved for the 
angular flux, II/, or its various functionals, can’ be written using conventional 
notation [ 131 as 

~~+n.V~+r,(r)~(r,R,f)-s(r,n,f)=f ~(r,n’,r)C,(r,R’~n)dn’. (1) 
4R 

The differential scattering cross-section, Ls(r, a’ + 12), can also be written as a 
product of the total scattering cross-section, Z,(r), and an angular scattering PDF 
f(r, Q’ + fl), so that the right-hand side of Eq. (1) becomes 

M-IS = Z,(r) f $(r, Cl’, t)f(r, R’ + i2) dR’. (2) 
4n 

For randomly oriented scattering centres, f(r, RI-n) is a function of the 
scattering angle, defined as the angle between the incident direction, R’, and exit 
direction, R. Denoting the cosine of this angle by ,u~, Eq. (2) can be rewritten as 

RHS = C,(r) 1 t,b(r, a’, t)fe da’, (3) 
4, 

where f(r, pO) is the PDF for p,,. Note that for a given p,, there exists a continuum 
of azimuthal scattering angles between 0 and 27~. 

A usual method of solving the transport equation, Eq. (1 ), involves expanding 
f(r, pO) using a complete polynomial set. While any complete set would work here, 

%I.76 2.13 
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the orthogonality property of the Legendre polynomials [ 143, I’,&), renders 
convenient the following expansion: 

f(r, PO) = ,I (F) .p,(Po). (4) 

I ‘, = I 1, f(r, po) p,ho) 4,. 

Substituting Eq. (4) into Eq. (3 ) yields 

% 

For notational convenience, the r dependence off, is suppressed. By orthogonality, 
the expansion coefftcients are calculated using 

(5) 

RHS = c f, g,(r, fl, r) 
r=o 

(6) 

with 

From Eq. (6) it is clear that any angular scattering PDF, f*(r, pO), with its 
Legendre expansion coefficients given by fJ*, yields the same solution to the 
transport equation as does f(r, pO), if and only if 

f g,(r, fk f)Cf, -f,*l = 0. 
/=O 

(8) 

Since Eq. (8) must hold for all r, Q t, it follows that f*(r, po) is equivalent to 
f(r, po), according to Eq. (8), if and only if 

A*=& or g,(r,R, t)=0, j>O. (9) 

Note that Eq. (9) always holds for j= 0 since both f(r, po) and f*(r, po) are PDFs. 
Equation (9) is easily understood by reference to the following three cases, in which 
the scalar flux, &r, t), is the angular flux integrated over all solid angles: 

(i) The angular flux is isotropic and can thus be written as 

IC/(r, fi, 1) = 4(r, r)/471. (10) 

Here, g, = 0 for j > 0 and any f*(r, po) is equivalent to f(r, po). 
(ii) The angular flux is linearly (lst-order) anisotropic and can thus be 

written as 

l(/(r, Q t) = t&r, t) + 0. w,(b !))/4n. (11) 
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It can be shown here, using the addition theorem [ 141, that g, = 0 for j> 1. 
Equivalence, Eq. (9), therefore demands f? = f, , i.e., equal average cosines of the 
scattering angle. 

(iii) The angular flux is Nth order anisotropic and can thus be written using 
conventional spherical harmonics [ 143 as 

(12) 

Using both the addition theorem and orthogonality properties [14], it can be 
shown that g, = 0 for j > N. Equivalence, Eq. (9) therefore demands 

f,* =f,7 j = 0, . . . . N. (13) 

Given the definition off, in Eq. (5), Eq. (13) implies that scattering equivalence 
for an Nth order anisotropic flux also demands equal moments of the scattering 
PDF. as 

phJ'* =&I', j = 0, . . . . N, (14) 

where 

I 
I 

pb” = 116 f(r, po) ho. (15) -I 

The above transport-based derivation formalizes the notion that the similarity of 
two functions can be measured by the similarity of their moments. While the above 
theory may be of some analytic utility, its application to Monte Carlo particle 
transport simulations is clear. For cases where the scattering is highly anisotropic 
or angularly irregular, it would be faster to sample a simpler, but approximately 
equivalent, angular scattering distribution than to sample f (r, po) directly. 
Similarity relations have been previously described [ 151. Unfortunately, these 
relations are derived for homogeneous slab geometry and are not valid near 
internal boundaries of multi-region geometries where the angular flux is highly 
anisotropic. 

Sampling of the scattering angle in Monte Carlo calculations is fastest and easiest 
when p. = kl since, for these limiting cases, no additional sampling is required for 
the azimuthal scattering angle. For all other values of po, the azimuthal angle is 
always sampled uniformly. Isotropic scattering is easily simulated since both ,uo and 
the azimuthal scattering angle can be sampled uniformly relative to any Cartesian 
coordinate system. In the general case, however, the fastest conceivable sampling 
would involve selecting a fixed forward angle, &, corresponding to the PDF 

f*(b po) = Go - d(r)), (16) 
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where 6 denotes the Dirac delta distribution. For this PDF, the equal moments 
requirement in Eq. (14), with N= 1, fixes & at PO, the average value of pO. Since 
matching higher moments (N> 1) overdetermines f*(r, pO), the practice of always 
selecting ,& for the value of p,, is exact only in regions where the flux is linearly 
anisotropic, defined as the diffusion regime. 

The simple and fast sampling method represented by Eq. (16) is easily extended 
to admit a higher order of flux anisotropy. In general, the equivalent scattering 
PDF consists of multiple Dirac delta spikes and is of the form 

(17) 

The equal moments requirement in Eq. (14), using the first N equations, results in 
the following system of N equations in 2N unknowns, namely uk and & : 

kc, a,(&,)‘=&‘, j=o, . . . . N- 1. (18) 

Equation ( 18) can be converted to an N x N nonlinear system by specifying that 
all spikes have the same amplitude, and by adding an equation for j= N. Unfor- 
tunately, the solutions for p,& frequently exceed 1.0 and are therefore unphysical. 
Fortunately, Eq. (18) can also be converted to an N x N linear system by pre- 
specifying the spike locations, p$-, and then solving for the spike amplitudes, a&. 
Logical choices for spike locations are at p&=0, 1, PO, -&, since each of these 
values either simplifies the N x N system or renders sampling of the azimuthal angle 
unnecessary. In order to ensure solutions of uk between 0 and 1, it is necessary to 
select spike locations on either side of &. 

For example, restricting the discussion to forward peaked scattering, the first live 
N x N systems employ the spike locations listed in Table I. The 5 x 5 system is the 
most accurate of these, and is given by: 

(19) 

Analytic solutions to these linear systems are easily found. Only those solutions 
for which 0 < ok < 1 are acceptable for Monte Carlo sampling. Solutions to the 1 x 1 
and 2 x 2 systems always satisfy this range criterion. Solutions to the 3 x 3 system, 
however, satisfy the range criterion if and only if the first and second moments obey 
the inequality 
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TABLE I 

Spike Locations for Discrete Angular 
Scattering PDF That Is Equivalent to a 

Continuous PDF with Average Cosine & 

N Spike locatlons 

1 PO 
2 f&l) 
3 (Ll. 0, 1) 
4 (Po.0. +I) 
5 (f&,0, +I) 

Equation (20) generally holds for highly forward peaked scattering. For example, 
the Henyey-Greenstein angular scattering function [ 151, discussed in the next sec- 
tion, obeys Eq. (20) for values of ,& > 0.5. Inequalities similar to Eq. (20) can also 
be derived for the 4 x 4 and 5 x 5 system. For example, any HenyeyGreenstein 
function with PO> 0 results in acceptable solutions to the 4 x 4 system, 
corresponding to the 4-spike PDF. The 5 x 5 system is much more sensitive and 
frequently yields negative uk values. In these instances the more robust 4-spike 
function should be used. 

The multiple spike angular scattering PDF should not be confused with discrete 
ordinate methods [13], in which the angular flux is represented by its values at a 
discrete set of angles. It should be emphasized that the spike configurations in 
Table I are just a few of the many possible. Generally, the spike locations or 
amplitudes or both may be left variable in an attempt to match as many moments 
as possible. The question of optimal spike PDF selection remains unresolved. The 
spike configurations in Table I, however, have the desirable properties that they 
lead to easily solvable linear systems with easily determined ranges of applicability, 
as described above. We have found that leaving spike locations variable results in 
nonlinear equation systems with solutions for spike locations that unpredictably fall 
outside the physical range (-1, 1). 

RESULTS AND DISCUSSION 

The above method for replacing a given angular scattering PDF by a PDF con- 
sisting of a sequence of spikes of different amplitudes was tested in a Monte Carlo 
code developed at our institution. The code was developed for heterogeneous media 
in accordance with the general principles of Monte Carlo simulation, including 
non-absorption weighting and exponential biasing [ 1] and was verified prior to 
testing the above angular sampling method. All exact solutions were obtained from 
standard tables [ 151 which were calculated using the doubling method [ 161. 
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Additional verification of the Monte Carlo code and testing of the sampling 
method were provided by having 4th- and Sth-order results (4 spikes) that 
approached the exact solutions. Results indicating the accuracy of the sampling 
method are provided in Fig. 1, for which the relative error in calculated transmit- 
tance is plotted as a function of both the order of the equivalent spike PDF and &. 
The exact angular scattering PDF employed is a Henyey-Greenstein function [ 151, 
being a smooth PDF with a single parameter, ,Li,, with the useful property that f, is 
simply ii&, and with the following functional form: 

f"&(j)= 2(l-~~)(t+iz~-2~,~,)-‘:2. (21) 

The simulations were done for normal incidence on a homogeneous test slab of 
thickness 8 mean free paths (mfp), characterized by the single scattering albedo 
ZJZ, = 0.9. Approximately 125,000 particle histories were simulated for each 
plotted point, sufficient to reduce the statistical error to less than one-fifth the 
relative transmittance error in all cases except those where the relative transmit- 
tance error is less than 1%. 

As expected, the accuracy of the method increases with N, the number of spikes 
employed, corresponding to the number of moments matched, Eq. (18). The dis- 
crete PDF with N = 5 is only slightly more accurate than with N = 4 and could only 
be used with j&=0.875. Since the variation in p0 decreases as scattering becomes 
increasingly foward peaked, the observed increase in accuracy is also expected. As 
& approaches 1.0, the spike amplitude at ,& approaches 1.0. In general, accuracy 

10 

1 

number of spikes, N 

FIG. I. Relative transmittance error when a HenyeyClreenstein angular scattering PDF is replaced 
by a discrete PDF using N spikes, for normal mctdence on a homogeneous test slab of thickness 8 mean 
free paths with Z,/L, =0.9. N= 5 can only be employed when PO = 0.875. The correct transmittance 
values are 0.0544, 0.1306, 0.2335, and 0.4493 for &=0.5. 0.75 0.875, and 1.0, respectively. 
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greater than 1% in the transmittance is obtainable with this method, and 4 spikes 
is the preferred discrete function. 

The method was also tested for the case of normal incidence on a homogeneous 
slab of thickness 8 mfp, with the albedo, c(, varied between 0.4 and 1.0, and with 
,ii,, = 0.875. The results are displayed as the two lower curves in Fig. 2. For an 
albedo greater than 0.7, accuracy to within 1% is obtainable. For an albedo less 
than 0.6, however, the accuracy of the method decreases rapidly. This decrease is 
expected, since decreasing the albedo increases the flux anisotropy. Accuracy of the 
method could not be assessed when the albedo is less than 0.4 since in this range 
the published exact solutions [ 151 contain at most one significant digit. 

A third test of the method involved simulating normal incidence on a 
homogeneous slab with variable thickness, albedo of 0.9, and j,, = 0.875. The results 
are displayed as the upper curve in Fig. 2, from which it is evident that the method 
is relatively insensitive to slab thickness. While the calculated transmittance is 
accurate to within 1% for slabs as thin as 0.5 mfp, the angular flux for these thin 
slabs would be very inaccurate. The method should thus work for heterogeneous 
media, provided the heterogeneities are spaced at least a few mfp apart so that the 
angular flux incident on a given region is correct. Accordingly, testing involved 

0 
thickness (mfp) 

10 20 

0’4 0’6 Ol6 ll0 

&IS, 

FIG 2. Relative transmittance error when a Henyey-Greenstem angular scattering PDF with 
& = 0.875 IS replaced by a discrete PDF usmg N spikes. Error bars indicate statistical uncertainty: upper 

curve, variable thickness and ZJL’, = 0.9; lower curves, thickness of 8 mfp and L’JZ, is variable: *. ? I % 
additional error m “correct” value. 
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detector area 

SoUrCe ema 

0 

w mfp 

(a) 04 

FIG. 3. Rectangular beam normally Incident on a homogeneous inlinite slab of thickness 15 mfp, 
albedo 0.95, and ji,, = 0.617. Inside the slab is a homogeneous sphere of diameter 4 slab mFp, albedo 0.90, 
& = 0.5, and L, one-fourth that in the slab: (a) side view; (b) front view Illustrating source and detectIon 
geometries 

simulating imaging of the homogeneous slab with an embedded sphere, shown in 
Fig. 3. 

An image of the sphere is indicated by the transmission ratios in Fig. 4. The 
image is blurred since scattering is not highly forward peaked. Spline PDFs were 
used as the actual angular scattering PDFs for both the sphere and slab regions so 
that, within statistical error, the spline curve is accurate. The corresponding ratios 
obtained using the spline and discrete PDFs all agree within statistical error, 

15- 

2 .- 
5 

sphere 

z 
--‘,,“.,-, 

- detectlo” -----4 

“..a , 

0 i lb 

distance along detection region (slab mfp) 

FIG. 4. Ratio of transmission with sphere to transmission wIthout sphere in the slab of Fig. 3, using 
both the discrete and sphne angular sampling methods. Error bars indicate the statlstical uncertainty m 
transmission values after smoothing (I :2: I ) the origmal histogram data. 
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although the discrete method ratios are consistently the highest. This bias is 
greatest near the sphere image and suggests that the discrete method slightly 
overestimates transmission. 

If the same sphere is embedded in a thinner but otherwise identical slab, the 
relative overestimation obtained using the discrete PDF increases. For thicker slabs 
the overestimation decreases. The transmission overestimation only occurs near the 
sphere image and arises from repeated scattering at pLo = 1.0, of part of the 
collimated beam. The resulting extra collimated beam tends to project directly 
through the relatively translucent sphere, resulting in significant overestimation of 
transmission if the sphere is too close to the slab entrance face. 

In general, a minimum distance exists between material boundaries that enables 
the discrete PDF method to reproduce the angular flux incident on these boun- 
daries to an accuracy limited by flux anisotropy. This minimum distance, d,,,, 
should be largest for the case of normal incidence, such as that in Fig. 3. A general 
value for d,,, can therefore be calculated by requiring that at an internal and nor- 
mal displacement of d,,,,,, the collimated beam is a small fraction of the transmit- 
tance, Thorno, for a homogeneous slab of thickness d,,,. Specifying the small frac- 
tion as 1 %, this requirement can be written from considerations of exponential 
attenuation as 

evC -4AL +-U 1 - ~,d)l< L,,,/W 

where aN is the amplitude of the spike at p0 = 1. This leads to 

dm,, , ln( Lomo/lW mfp. 

cu,” - 1 

(22) 

(23) 

For the configuration in Fig. 3, 
8 mfp from the slab entrance 
mission, Fig. 4, is expected. 

d,,, is approximately 9 mfp. Since the sphere is only 
face, the observed slight overestimation in trans- 

-'l 0 i 

P 

FIG 5 Test spline function for L‘,(p) Illustratmg tabular approximation based on equal probablhty 
spacmg (---). and discrete approximation based on 4 spikes of relative heights as shown (t). Here 
&=0.617. 
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TABLE 11 

Compartson of Three Angular Sampling Methods for the Sphne Angular 
Scattertng PDF Grven m Fig 5. and for Which the Sphne Method is Exact, 

Apart from the Stated Statistical Error 

Samphng method Ttme Transmittance 

Tabular (20 entrres) 10 0.072 1 * 0.5 % 
Sphnes 109 0.0742 * 1.0% (exact) 
Discrete 0.87 0.0744 f 0 5 % 

Note. Values were obtained for normal mcrdence on the test slab with & = 0.617. Computation ttme 
IS normahzed to 1.0 for the tabular method. 

To test the speed of the discrete angular sampling method, simulations were con- 
ducted on the test slab, with the spline PDF shown in Fig. 5, and for which the 
spline method is therefore exact. The discrete (4 spikes) and tabular (20 entries) 
equivalent PDFs were sampled in separate simulations and are also shown in 
Fig. 5. A comparison of the relative computation times and accuracies of these three 
angular sampling methods is given in Table II. Discrete angular sampling is fastest 
irrespective of the number of table entries or splines used since it renders com- 
putation of direction matrices unnecessary for scattering with p. = 1. The difference 
in computation time between the discrete and tabular methods is approximately 
proportional to aN and independent of table size. Additionally, more than 20 table 
entries are necessary to achieve the accuracy obtained with 4 spikes. 

SUMMARY 

A discrete angular sampling method has been derived based on matching the first 
N moments of a given continuous angular scattering PDF with the first N moments 
of a discrete PDF consisting of a sequence of N Dirac delta spikes. The accuracy of 
Monte Carlo simulations using the discrete method increases with N. If a single 
spike is used, the simulation is exact in the diffusion regime, characterized by linear 
flux anisotropy. When N > 1 spikes are used, the simulation is exact in regions 
where the flux anisotropy is of order N - 1. Statistical errors aside, computed trans- 
mittances for homogeneous slabs with N = 4 are generally accurate to within 1 %, 
provided the single scattering albedo exceeds 0.7. For simulations in heterogeneous 
media, an estimable minimum separation of material boundaries exists that 
preserves the inherent accuracy of this method. 

The discrete angular sampling method works best for highly forward peaked 
scattering with a high albedo. The choice of spike locations is arbitrary, although 
not all sets of locations generate positive spike amplitudes. The N = 4 set suggested 
in this paper reliably generates positive amplitudes for all forward scattering PDFs 
we have encountered. 
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In Monte Carlo simulations, the discrete method and tabular method require 
comparable computational effort, since each procedure requires as input a discrete 
representation of a continuous PDF and thereupon performs basic numerical 
integration. The discrete method is, however, slightly faster than the tabular 
method and more flexible, since far fewer spikes than table entries are required for 
each region in a heterogeneous medium. 
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